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Abstract. Graph labelling is a key activity of network science, with
broad practical applications, and close relations to other network sci-
ence tasks, such as community detection and clustering. While a large
body of work exists on both unsupervised and supervised labelling algo-
rithms, the class of random walk-based supervised algorithms requires
further exploration, particularly given their relevance to social and polit-
ical networks. This work proposes a new semi-supervised graph labelling
method, the GLaSS method, that exactly calculates absorption proba-
bilities for random walks on connected graphs, whereas previous meth-
ods rely on simulation and approximation. The proposed method models
graphs exactly as a discrete time Markov chain, treating labelled nodes as
absorbing states. The method is applied to a series of undirected graphs
of roll call voting data from the United States House of Representatives.
The GLaSS method is compared to existing supervised and unsuper-
vised methods, demonstrating strong and consistent performance when
estimating the labels of unlabelled nodes in graphs.

Keywords: Community detection · Graph labelling · Random walk
Markov chain · Political networks

1 Introduction

Graph labelling is concerned with the problem of estimating the labels of one or
more nodes within a graph, where an association between the graph’s structure
and the distribution of labels is assumed to exist. Many graph labelling algo-
rithms exist, both supervised [2,7,13] and unsupervised [10,14]. In both cases,
a graph comprises u unlabelled and � labelled nodes, and the algorithms seek
to estimate the labels of the unlabelled nodes. While a diverse range of graph
labelling methods exist [4], this work focuses on the class of dynamical and
statistical inference methods that use random walks.
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In unsupervised algorithms, the graph is organised into clusters, without
consideration of the labelled nodes. Once clustered, labels for unlabelled nodes
in the graph can be estimated based on the clusters to which labelled nodes
belong. However, cases may arise where an identified cluster contains no labelled
nodes, or where a cluster contains multiple nodes with different labels, creating
uncertainty as to how labels should be estimated for nodes in such clusters.

The Walktrap algorithm is one commonly used random walk-based unsu-
pervised graph labelling method [10]. Walktrap searches for densely connected
subgraphs by simulating short random walks on a graph, reasoning that short
walks are more likely to remain in the same cluster than to leave it. Walktrap
quantifies the similarity between nodes using a distance metric, then recursively
merges identified clusters based on short random walks, providing a hard classifi-
cation for each node. Because Walktrap does not use information about labelled
nodes, there is no generally accepted method for estimating the labels for unla-
belled nodes based on the clusters it identifies.

Unlike unsupervised algorithms, supervised algorithms utilise the informa-
tion contained in labelled nodes when estimating the labels of unlabelled nodes.
A common approach is to treat labelled nodes as absorbing states and unla-
belled nodes as transient states in a discrete time Markov chain (DTMC), and
estimate the absorption probabilities or expected times to absorption for all tran-
sient states in the chain. Labels for each unlabelled state can then be estimated
using the approximate probabilities or times. However, while supervised methods
use both labelled nodes and the graph’s structure to estimate labels, they only
approximate absorption probabilities and times, rather than calculating them
exactly.

The Rendezvous algorithm [2] labels nodes in a semi-supervised setting by
constructing a simplified, “rendezvous” graph, where edges are drawn from an
unlabelled node to only its M nearest neighbours. M is chosen to be as small
as possible while ensuring that each unlabelled node in the rendezvous graph is
connected to at least one labelled node. Once the renedezvous graph has been
constructed, edge weights are calculated using a Euclidean distance metric, and
absorption probabilities are calculated using the eigenvalues and eigenvectors of
the rendezvous graph’s transition matrix. Absorption probabilities for nodes in
the rendezvous graph are then used to estimate the label of nodes in the full
graph.

Another semi-supervised graph labelling method seeks to label nodes in a
binary setting according to expected time to absorption, rather than absorp-
tion probability [7]. This “Censored Time” method simulates step-limited ran-
dom walks over a graph, recording the number of steps taken for all walks that
are absorbed before being terminated by the step limit. The censored times to
absorption for absorbed walks are used to approximate the conditional expected
time to absorption in each labelled node in the graph. A hard classification is
used to estimate labels according to the lowest censored conditional time to
absorption.
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This work proposes a new semi-supervised graph labelling method, the Graph
Labelling Semi-Supervised (GLaSS) method, using random walks to absorption.
The method models a graph as a DTMC, where transient states correspond to
unlabelled nodes, and absorbing states correspond to labelled nodes. The tran-
sition matrix P , for the DTMC, is formed from the graph’s weighted adjacency
matrix by normalising the weighted out-degree of each node in the network. From
careful construction of P , the probability of absorption in each absorbing state
can be calculated exactly, and these probabilities can then be used to estimate
the label for every node corresponding to a transient state in the DTMC.

By calculating exact absorption probabilities and expected times to absorp-
tion, the GLaSS method provides better label estimates than contemporary
supervised methods, which rely on approximations of these quantities. By utilis-
ing the information contained in labelled nodes in the graph, GLaSS also provides
a clear method for estimating the label of unlabelled nodes using quantities that
are meaningful and interpretable, unlike unsupervised random walk methods.

The GLaSS method is formally introduced in Sect. 2. Section 3 describes the
data analysed, and a full description of all analyses performed is presented in
Sect. 4. Conclusions and areas for further work are discussed in Sect. 5.

2 Method

Consider an undirected graph G = (V,E) comprising n nodes, V = {v1, . . . , vn},
connected by a set of positive real-weighted edges E. Define the weighed adja-
cency matrix A = [ai,j ], where ai,j = aj,i records the weight of the edge con-
necting vi and vj , and ai,j = 0 if no edge connects vi and vj . Suppose the first
u nodes in G are unlabelled, and the remaining � nodes in G are labelled, where
n = u+ �, and construct the sets U = {1, . . . , u} and L = {u+1, . . . , n} to index
the unlabelled and labelled nodes of G, respectively. Arrange A as

A =
[

AU,U AU,L

AL,U AL,L

]

where AJ,K describes the weighted edges connecting nodes indexed by J to nodes
indexed by K.

Consider a random walk on G, described by a discrete time Markov chain
(DTMC) where all unlabelled nodes map to transient states and all labelled
nodes map to absorbing states. Let Xt denote the state of the chain at time t.
Calculate the transition probabilities for the DTMC using A, where

pi,j = P (Xt+1 = j | Xt = i) =
ai,j∑n

k=1 ai,k
(1)

is the probability that the DTMC is in state j at the next time step, given that
the DTMC is currently in state i. Construct the transition matrix

P = [pi,j ] =
[

PU,U PU,L

PL,U PL,L

]
=

[
R S
0 I�

]
. (2)
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The u × u matrix R governs transitions between transient states, the u × �
matrix S governs transitions from transient states to absorbing states, 0 is an
� × u zero matrix, and I� is the � × � identity matrix.

2.1 DTMC Absorption Probabilities

Let hi,j be the probability that the DTMC is eventually absorbed in state j,
given that the chain starts in state i. Define the matrix of absorption probabilities
H = [hi,j ]. H is restricted to have u rows and � columns, corresponding to the
u transient states and � absorbing states of the DTMC, respectively. Then H
can be calculated as

H = (Iu − R)−1S (3)

where Iu is the u × u identity matrix, and R and S are as above [6].

2.2 Semi-supervised Graph Labelling

Given a graph G and the matrix of absorption probabilities H, let Yi be the
label of an unlabelled node vi, and let yj be the label of a labelled node vj . The
distribution over Yi can be directly derived from H, for all i ∈ U , as follows:

P (Yi = k) =
n∑

j=u+1

hi,j1(yj = k) (4)

where 1 is an indicator function, taking value 1 if its argument is true, and 0
otherwise.

2.3 DTMC Expected Times to Absorption

Let ti be the expected number of time steps before the DTMC is absorbed in
any absorbing state, given that the chain starts in state i. Define the vector
of expected times to absorption t = (t1, . . . , tu)T , where the u elements of t
correspond to the u transient states of the DTMC. Then t can be calculated as

t = (Iu − R)−1c (5)

where c is a column vector of length u whose entries are all 1, and Iu and R are
as above [6].

2.4 The Graph Labelling Semi-supervised (GLaSS) Method

Consider a graph G, with u unlabelled nodes and � labelled nodes, and suppose
that all labelled nodes have one of two labels; either K1 or K2. From the weighted
adjacency matrix A, construct the transition matrix P , as in (1). Using P ,
calculate the vector of expected times to absorption t, as in (5). The expected
times to absorption may, optionally, be used as a filtering criterion; nodes with



308 M. Glonek et al.

a large expected time to absorption, relative to the distribution of ti over all
nodes in the graph, may be excluded from further analysis.

Once nodes have been optionally filtered using t, calculate the matrix of
absorption probabilities H, by (3), and calculate P (Yi = K1) and P (Yi = K2)
for all i ∈ U , as in (4). Because, by the Law of Total Probability, P (Yi =
K1) + P (Yi = K2) = 1, only one probability is required to proceed. Consider
P (Yi = K1) for all i, and implement a binary classifier with some threshold
α. If P (Yi = K1) ≥ α, estimate the label for node vi as K1; otherwise, if
P (Yi = K1) < α, estimate the label for node vi as K2. Choose α to maximise
the binary classifier’s discrimination between K1 and K2.

Using this method, it is possible to estimate the label for every unlabelled
node in G. As a graph labelling method in a semi-supervised setting, the method
is called the GLaSS method.

3 Data

Validating the GLaSS method requires graphs with a clear community structure
and known labels for all nodes. To simulate a graph with few known labels,
only a small subset of all known labels will be used by GLaSS, with remaining
labels withheld to simulate “unlabelled” nodes in the graph. All labels estimated
by GLaSS can be compared to actual, withheld labels, to assess performance.
Therefore, United States roll call voting data is used to validate the GLaSS
method.

In the United States House of Representatives (the House), parliamentary
procedure occasionally gives rise to roll call votes. In a roll call vote, the vote of
every member of the House is recorded, making it possible to see which members
of the House voted the same way. Roll call voting data can be modelled as an
undirected graph, where each node represents a member of the House, and a
positive integer-weighted edge records the number of times respective members
voted the same way.

The results of roll call votes in the House for the meetings of eight separate
Congresses, between 1953 and 19971, have been collected for analysis [9], and
modelled as eight separate undirected graphs. For simplicity, in each Congress,
the following rules are applied:

1. Only “yea” and “nay” votes are considered.
2. Votes are disregarded if cast by the Speaker of the House2,3.
3. Only members whose party affiliation is Democrat or Republican are consid-

ered.
4. In cases where a member’s party affiliation changes during a meeting of

Congress, their party affiliation at the time they were elected is used.

1 Each meeting of Congress begins on January 3 and runs for a period of two years.
2 Conventionally, the Speaker of the House participates in very few votes.
3 The 101st Congress had two speakers, both of whose votes are disregarded in these

analyses.
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5. In rare cases, a member of the House does not sit for the entire meeting of
Congress, and their seat is taken by a new member. In these cases, the voting
records of both members are retained.4

Because the party affiliation of each member is known, all nodes in each
graph are labelled. For random walks on each graph, only the labels of nodes
corresponding to the Majority Leader and the Minority Leader are retained (one
Democrat and one Republican), thus all other nodes in each graph are “unla-
belled”. Choice of Congresses is informed by recent work examining partisanship
trends in the House [1], ensuring variation in partisanship and which party is in
Majority. All graphs are either fully connected or nearly fully connected, and a
detailed summary of each graph is contained in Table 1.

Table 1. Years covered, total number of members (nodes), democrats, republicans,
and votes for each congress. Congresses where the number of democrats is shown in
bold had a democrat majority leader, and congresses where the number of republicans
is shown in bold had a republican majority leader.

Congress Years Total members Democrats Republicans Votes

83rd 1953–55 439 218 221 147

86th 1959–61 441 285 156 180

89th 1965–67 441 299 142 394

92nd 1971–73 442 257 185 649

95th 1977–79 440 293 147 1540

98th 1983–85 438 271 167 906

101st 1989–91 441 262 179 879

104th 1995–97 443 208 235 1321

4 Results

Each Congress is modelled as a graph, and each graph is analysed using the
GLaSS method, as described in Sect. 2.4. Expected time to absorption is calcu-
lated for each “unlabelled” node in each graph; the mean and variance of ti for
each graph are given in Table 2. Based on the distribution of ti for each graph,
no filtering is required, and labels are estimated for all “unlabelled” nodes in
each Congress.

As each graph contains only two labelled nodes (one Democrat, one Repub-
lican), only the probability of being absorbed in the Democrat state of the cor-
responding DTMC is considered. Histograms of absorption probabilities for the
83rd, 86th, 89th, and 92nd Congresses are shown in Fig. 1, and histograms for
the 95th, 98th, 101st, and 104th Congresses are shown in Fig. 2. In all Con-
gresses, Democrat and Republican members are clearly separated, though some
overlap between clusters exists.
4 Consequently, while the House has 435 seats, each graph has more than 435 nodes.
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Using the binary classifier in GLaSS, a threshold αk is chosen for the kth
Congress. If P (Yi = Democrat) ≥ αk, then member i is labelled a Democrat;
otherwise, member i is labelled a Republican. Estimated labels are compared to
the true party affiliation for all “unlabelled” nodes. By varying αk across the
range of absorption probabilities calculated for each respective Congress, a ROC
curve is derived. ROC curves for all eight Congresses are displayed in Fig. 3, and
the AUC for each Congress is given in Table 2.

Fig. 1. Clockwise from top right: 86th, 92nd, 89th, and 83rd congresses. Histograms
show the probability of absorption in the democrat cluster for each congress. Red bars
show republican members, and blue bars show democrat members. The range of absorp-
tion probabilities for each congress is narrow, but clusters are clearly separated. Note
there is more overlap between clusters in the 89th and 92nd congresses, corresponding
to increased bipartisanship [1].
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Fig. 2. Clockwise from top right: 98th, 104th, 101st, and 95th congresses. Histograms
show the probability of absorption in the democrat cluster for each congress. Red
bars show republican members, and blue bars show democrat members. The range of
absorption probabilities for each congress is narrow, but clusters are clearly separated.
Clusters become more separated over time, corresponding to an increase in partisanship
within the house [1].

4.1 Comparison to Other Methods

The GLaSS method is compared to two alternative random walk-based graph
labelling methods. The first method, the Walktrap algorithm [10], is an unsuper-
vised method. Walktrap searches for densely connected subgraphs by simulating
random walks on a graph, reasoning that short random walks are more likely to
stay in the same cluster than to leave it. Because each Congress has two clearly
defined clusters (Democrats and Republicans), the Walktrap algorithm is suc-
cessful, in the first instance, if it places the Majority Leader and Minority Leader
in different clusters, and if only two clusters are identified. If the Walktrap algo-
rithm is successful in separating the Majority and Minority Leaders, the label for
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Fig. 3. ROC curves showing the performance of the binary classifier in GLaSS for each
Congress, as αk is varied. As expected, the three most partisan congresses analysed
(89th, 92nd, and 95th) [1] show the weakest performance.

each member is estimated to be the same as the label of the Leader in that mem-
ber’s cluster. All analysis is conducted using a popular default implementation
of the Walktrap algorithm [8].

The second method (Censored Time) is semi-supervised, and estimates the
expected time to absorption, conditional on being absorbed in each labelled
state [7]. Censored Time simulates step-limited random walks on a graph, where
a walk is terminated if it is not absorbed before reaching the step limit. For walks
that are absorbed, the censored conditional time to absorption is recorded, and
these are used to estimate the conditional expected time to absorption for each
labelled state. For a graph with two labels, Censored Time labels nodes according
to the state with the smaller estimated conditional expected time to absorption.
For each graph, the exact expected time to absorption is calculated for all nodes,
as specified in Sect. 2.3, and the ceiling of the mean expected time to absorption
is adopted as the step limit for Censored Time. For each “unlabelled” state
in each graph, 1000 step-limited random walks are simulated, to estimate the
conditional expected time to absorption for each labelled state.

To compare the performance of Walktrap, Censored Time, and GLaSS, an
F1 score is calculated for each method and each Congress. For each Congress,
the value of αk is chosen to maximise GLaSS’s F1 score. F1 scores for all three
methods and all eight Congresses are given in Table 2. From the F1 scores, it is
clear that GLaSS outperforms Censored Time for all Congresses, and equals or
surpasses Walktrap in mose cases. Walktrap provides comparable performance to
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GLaSS for the most partisan Congresses (101st and 104th), but its performance
decreases with decreasing partisanship, and it fails for two Congresses (83rd
and 89th), by identifying more than two clusters. The GLaSS method exceeds,
or effectively matches, the performance of Walktrap and Censored Time for
all Congresses, while also showing greater resilience to decreasing separation of
clusters caused by decreases in partisanship [1].

Table 2. F1 scores for walktrap and censored time, and the maximal F1 score for
GLaSS (highest scores shown in bold). Additionally, αk gives the range of cutoffs that
yield the maximal F1 score using GLaSS. AUC gives the area under the curve for the
ROC curves for GLaSS. The mean and variance of the expected time to absorption
(see Sect. 2.3) for each Congress are given in μt and σt, respectively.

Congress F1 score GLaSS

Walktrap Censored time GLaSS αk AUC μt σt

83rd -a 0.5068 0.9864 (0.471117, 0.471149) 0.9978 191.77 0.0037

86th 0.8479 0.5779 0.9561 (0.542170, 0.542193) 0.9899 203.47 0.0062

89th -a 0.5957 0.9122 (0.521823, 0.521827) 0.9464 214.97 0.0014

92nd 0.7975 0.5259 0.8876 (0.494203, 0.494204) 0.9338 208.33 0.0046

95th 0.8333 0.5558 0.9293 (0.531896, 0.531899) 0.9528 218.68 0.0014

98th 0.8907 0.5602 0.9531 (0.534291, 0.534311) 0.9857 216.22 0.0044

101st 0.9738 0.5980 0.9736 (0.539083, 0.539084) 0.9949 223.42 0.0007

104th 0.9878 0.5667 0.9878 (0.439130, 0.439215) 0.9979 223.20 0.0030
a More than two clusters identified

5 Discussion

Graph labelling is a fundamental task within network science, with diverse appli-
cations. This work proposes a new semi-supervised graph labelling method, the
GLaSS method, using random walks to absorption. The GLaSS method has been
used to analyse a series of undirected graphs, showing very strong performance
when estimating the labels of unlabelled nodes. The GLaSS method represents
a compelling alternative to existing supervised and unsupervised random walk
methods. The key features of the GLaSS method are that, unlike other super-
vised methods, it calculates exact absorption probabilities and expected times
to absorption, and, unlike unsupervised methods, it provides a clear method for
the labelling of unlabelled nodes based on identified clusters.

Results show the GLaSS method meets or exceeds the performance of the
supervised and unsupervised methods to which it is compared, as measured
using F1 score. ROC curves and AUC for each graph analysed also show that
the GLaSS method shows consistently very strong performance. Future work will
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extend this work to examine the performance of the GLaSS method for graphs of
varying size, connectedness, density, and with different numbers of known labels.
Extending the GLaSS method can be generalised to label graphs with more than
two clusters, and graphs with fewer labelled nodes than clusters, is of particular
interest. Future work will also explore the use of expected time to absorption as
a filtering criterion for nodes, particularly in cases where the number of clusters
exceeds the number of known labels.

In an applied setting, future work will also use GLaSS to further explore
social, political, and other networks. Online and social-media networks are of
particular interest, with a growing body of work examining the structure, dynam-
ics, and polarisation of online social networks [3,5,11,12]. Future applied work
with GLaSS will examine these characteristics for new and existing graphs.
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