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ABSTRACT

The problem of an ensemble Kalman filter when only partial observations are available is considered. In

particular, the situation is investigated where the observational space consists of variables that are directly

observable with known observational error, and of variables of which only their climatic variance and mean

are given. To limit the variance of the latter poorly resolved variables a variance-limiting Kalman filter

(VLKF) is derived in a variational setting. The VLKF for a simple linear toy model is analyzed and its range of

optimal performance is determined. The VLKF is explored in an ensemble transform setting for the Lorenz-

96 system, and it is shown that incorporating the information of the variance of some unobservable variables

can improve the skill and also increase the stability of the data assimilation procedure.

1. Introduction

In data assimilation one seeks to find the best estima-

tion of the state of a dynamical system given a forecast

model with a possible model error and noisy observa-

tions at discrete observation intervals (Kalnay 2002).

This process is complicated on the one hand by the of-

ten chaotic nature of the underlying nonlinear dynamics

leading to an increase of the variance of the forecast, and

on the other hand by the fact that one often has only

partial information of the observables. In this paper we

address the latter issue. We consider situations whereby

noisy observations are available for some variables but

not for other unresolved variables. However, for the latter

we assume that some prior knowledge about their statis-

tical climatic behavior such as their variance and their

mean is available.

A particularly attractive framework for data assimila-

tion are ensemble Kalman filters (e.g., see Evensen 2006 ).

These straightforwardly implemented filters distinguish

themselves from other Kalman filters in that the spatially

and temporally varying background error covariance is

estimated from an ensemble of nonlinear forecasts. De-

spite the ease of implementation and the flow-dependent

estimation of the error covariance, ensemble Kalman

filters are subject to several errors and specific difficulties

[see Ehrendorfer (2007) for a recent review]. Besides the

problems of estimating model error, which is inherent

to all filters, and inconsistencies between the filter assump-

tions and reality such as non-Gaussianity which render

all Kalman filters suboptimal, ensemble-based Kalman fil-

ters have the specific problem of sampling errors due to an

insufficient size of the ensemble. These errors usually un-

derestimate the error covariances, which may ultimately

lead to filter divergence when the filter trusts its own fore-

cast and ignores the information given by the observations.

Several techniques have been developed to counter-

act the associated small spread of the ensemble. To deal

with errors in ensemble filters due to sampling errors we

mention two of the main algorithms: covariance in-

flation and localization. To avoid filter divergence due to

an underestimation of error covariances the concept of

covariance inflation was introduced whereby the prior

forecast error covariance is increased by an inflation

factor (Anderson and Anderson 1999). This is usually

done in a global fashion and involves careful and ex-

pensive tuning of the inflation factor; however, recently
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methods have been devised to adaptively estimate the

inflation factor from the innovation statistics (Anderson

2007, 2009; Li et al. 2009). Too small ensemble sizes also

lead to spurious correlations associated with remote

observations. To address this issue, the concept of local-

ization has been introduced (Houtekamer and Mitchell

1998, 2001; Hamill et al. 2001; Ott et al. 2004; Szunyogh

et al. 2005) whereby only spatially close observations are

used for the innovations.

To take into account the uncertainty in the model

representation we mention here isotropic model error

parameterization (Mitchell and Houtekamer 2000;

Houtekamer et al. 2005), stochastic parameterizations

(Buizza et al. 1999), and kinetic energy backscatter (Shutts

2005). A recent comparison between those methods is

given in Houtekamer et al. (2009), Charron et al. (2010),

and Hamill and Whitaker (2005). The problem of non-

Gaussianity is for example discussed in Pires et al. (2010)

and Bocquet et al. (2010).

Whereas the underestimation of error covariances

has received much attention, relatively little is done for

a possible overestimation of error covariances. Over-

estimation of covariance is a finite-ensemble size effect

that typically occurs in sparse observation networks

(e.g., see Liu et al. 2008; Whitaker et al. 2009). Un-

controlled growth of error covariances, which is not

tempered by available observations, may progressively

spoil the overall analysis. This effect is even exacerbated

when inflation is used; in regions where no observations

influence the analysis, inflation can lead to unrealisti-

cally large ensemble variances progressively degrading

the overall analysis (e.g., see Whitaker et al. 2004). This

is particularly problematic when inappropriate uniform

inflation is used. Moreover, it is well known that co-

variance localization can be a significant source of im-

blance in the analyzed fields (e.g., see Houtekamer and

Mitchell 2005; Kepert 2009; Houtekamer et al. 2009).

Localization artificially generates unwanted gravity wave

activity, which in poorly resolved spatial regions may lead

to an unrealistic overestimation of error covariances.

Being able to control this should help filter perfor-

mances considerably.

When assimilating current weather data in numerical

schemes for the troposphere, the main problem is un-

derestimation of error covariances rather than over-

estimation. This is due to the availability of radiosonde

data, which assures wide observational coverage. How-

ever, in the preradiosonde era there were severe data

voids, particularly in the Southern Hemisphere and in

vertical resolution since most observations were done on

the surface level in the Northern Hemisphere. There is

an increased interest in so-called climate reanalysis (e.g.,

see Bengtsson et al. 2007; Whitaker et al. 2004), which

has the challenge to deal with large unobserved regions.

Historical atmospheric observations are reanalyzed by

a fixed forecast scheme to provide a global homoge-

neous dataset covering troposphere and stratosphere for

very long periods. A remarkable effort is the inter-

national Twentieth Century Reanalysis Project (20CR;

Compo et al. 2011), which produced a global estimate of

the atmosphere for the entire twentieth century (1871 to

the present) using only synoptic surface pressure reports

and monthly sea surface temperature and sea ice dis-

tributions. Such a dataset could help to analyze climate

variations in the twentieth century or the multidecadal

variations in the behavior of the El Niño–Southern

Oscillation. An obstacle for reanalysis is the over-

estimation of error covariances if one chooses to employ

ensemble filters (Whitaker et al. 2004) where multipli-

cative covariance inflation is employed.

Overestimation of error covariances also occurs in

modern numerical weather forecast schemes for which

the upper lid of the vertical domain is constantly pushed

toward higher and higher levels to incorporate the me-

sosphere, with the aim to better resolve processes in the

polar stratosphere (e.g., see Polavarapu et al. 2005;

Sankey et al. 2007; Eckermann et al. 2009). The energy

spectrum in the mesosphere is, contrary to the tropo-

sphere, dominated by gravity waves. The high variability

associated with these waves causes very large error co-

variances in the mesosphere which can be 2 orders of

magnitude larger than at lower levels (Polavarapu et al.

2005), rendering the filter very sensitive to small un-

certainties in the forecast covariances. Being able to

control the variances of mesospheric gravity waves is

therefore a big challenge.

The question we address in this work is how can the

statistical information available for some data, which are

otherwise not observable, be effectively incorporated in

data assimilation to control the potentially high error

covariances associated with the data void. We will de-

velop a framework to modify the familiar Kalman filter

(e.g., see Evensen 2006; Simon 2006) for partial obser-

vations with only limited information on the mean and

variance, with the effect that the error covariance of the

unresolved variables cannot exceed their climatic vari-

ance and their mean is controlled by driving it toward

the climatological value.

The paper is organized as follows. In section 2 we will

introduce the dynamical setting and briefly describe the

ensemble transform Kalman filter (ETKF), a special

form of an ensemble square root filter. In section 3 we

will derive the variance-limiting Kalman filter (VLKF)

in a variational setting. In section 4 we illustrate the

VLKF with a simple linear toy model for which the fil-

ter can be analyzed analytically. We will extract the
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parameter regimes where we expect VLKF to yield

optimal performance. In section 5 we apply the VLKF to

the 40-dimensional Lorenz-96 system (Lorenz 1996) and

present numerical results illustrating the advantage of

such a variance-limiting filter. We conclude the paper

with a discussion in section 6.

2. Setting

Assume an N-dimensional1 dynamical system whose

dynamics is given by

_z 5 f(z), (1)

with the state variable z 2 RN . We assume that the state

space is decomposable according to z 5 (x, y) with

x 2 Rn and y 2 Rm and n 1 m 5 N. Here x shall denote

those variables for which direct observations are avail-

able, and y shall denote those variables for which only

some integrated or statistical information is available.

We will coin the former observables and the latter

pseudo-observables. We do not incorporate model error

here and assume that (1) describes the truth. We apply

the notation of Ide et al. (1997) unless stated explicitly

otherwise.

Let us introduce an observation operator H:RN/R
n,

which maps from the whole space into observation space

spanned by the designated variables x. We assume that

observations of the designated variables x are given at

equally spaced discrete observation times ti with the

observation interval Dtobs. Since it is assumed that there

is no model error, the observations y
o
2 Rn at discrete

times ti 5 iDtobs are given by

yo(ti) 5 Hz(ti) 1 ro,

with independent and identically distributed observa-

tional Gaussian noise ro 2 R
n. The observational noise is

assumed to be independent of the system state, and to

have zero mean and constant covariance Ro 2 R
n3n.

We further introduce an operator h:RN/R
m, which

maps from the whole space into the space of the pseudo-

observables spanned by y. We assume that the pseudo-

observables have variance Aclim 2 R
m3m and constant

mean aclim 2 R
m. This is the only information available

for the pseudo-observables, and may be estimated, for

example, from climatic measurements. The error co-

variance of those pseudo-observations is denoted by

R
w
2 Rm3m.

The model forecast state zf at each observation in-

terval is obtained by integrating the state variable with

the full nonlinear dynamics in (1) for the time interval

Dtobs. The background (or forecast) involves an error

with covariance Pf 2 R
N3N .

Data assimilation aims to find the best estimation of

the current state given the forecast zf with variance Pf

and observations yo of the designated variables with

error covariance R
o
. Pseudo-observations can be included

following the standard Bayesian approach once their

mean aclim and error covariance R
w

are known. How-

ever, the error covariance Rw of a pseudo-observation is

in general not equal to Aclim. In section 3, we will show

how to derive the error covariance Rw in order to ensure

that the forecast does not exceed the prescribed variance

Aclim. We do so in the framework of Kalman filters and

shall now briefly summarize the basic ideas to construct

such a filter for the case of an ensemble square root filter

(Tippett et al. 2003), that is, the ensemble transform

filter (Wang et al. 2004).

Ensemble Kalman filter

In an ensemble Kalman filter (EnKF; Evensen 2006)

an ensemble with k members zk

Z 5 [z1, z2, . . . , zk] 2 RN3k

is propagated by the full nonlinear dynamics (1), which

is written as

_Z5 f(Z), f(Z) 5 [ f(z1), f(z2), . . . , f(zk)] 2 RN3k. (2)

The ensemble is split into its mean:

z 5
1

k
�

k

i51
zi 5 Zw with w 5

1

k
e 2 Rk,

where e 5 [1, . . . , 1]T 2 Rk, and its ensemble deviation

matrix

Z9 5 Z 2 zeT 5 ZT,

with the constant projection matrix:

T 5 I 2 weT 2 Rk3k.

The ensemble deviation matrix Z9 can be used to ap-

proximate the ensemble forecast covariance matrix via

Pf (t) 5
1

k 2 1
Z9(t)[Z9(t)]T 2 RN3N .

Given the forecast ensemble Zf 5 Z(ti 2 �) and the as-

sociated forecast error covariance matrix (or the prior)

1 The exposition is restricted to RN , but we note that the formula-

tion can be generalized for Hilbert spaces.
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P
f
(t

i
2 �), the actual Kalman analysis (Kalnay 2002;

Evensen 2006; Simon 2006) updates a forecast into

a so-called analysis (or the posterior). Variables at times

t 5 ti 2 � are evaluated before taking the observations

(and/or pseudo observations) into account in the analysis

step, and variables at times t 5 ti 1 � are evaluated after

the analysis step when the observations (and/or pseudo

observations) have been taken into account. In the first

step of the analysis the forecast mean,

zf 5 Zf w,

is updated to the analysis mean:

za 5 zf 2 Ko[Hzf 2 yo] 2 Kw[hzf 2 aclim], (3)

where the Kalman gain matrices are defined as

Ko 5 PaHTR21
o

Kw 5 PahTR21
w . (4)

The analysis covariance P
a

is given by the addition rule

for variances, typical in linear Kalman filtering (Kalnay

2002):

Pa 5 (P21
f 1 HT R21

o H 1 hT R21
w h)21. (5)

To calculate an ensemble Za, which is consistent with the

error covariance after the observation P
a
, and that there-

fore needs to satisfy

Pa 5
1

k 2 1
ZaT[Za]T,

we use the method of ensemble square root filters

(Simon 2006). In particular we use the method proposed

in (Tippett et al. 2003; Wang et al. 2004), the so-called

ETKF, which seeks a transformation S 2 Rk3k such that

Z9a 5 Z9f S. (6)

Alternatively one could have chosen the ensemble ad-

justment filter (Anderson 2001) in which the ensemble

deviation matrix Z9f is premultiplied with an appropri-

ately determined matrix A 2 RN3N . However, since we

are mainly interested in the case k� N we shall use the

ETKF. Note that the matrix is not uniquely determined

for k , N. The transformation matrix can be obtained

either by using continuous Kalman filters (Bergemann

et al. 2009) or directly (Wang et al. 2004) by

S 5 C(Ik1 G)2(1/2)CT.

Here CGCT is the singular value decomposition of

U 5
1

k 2 1
TTZT

f (HTR21
o H 1 hTR21

w h)Zf T.

The matrix C 2 Rk3(k21) is obtained by erasing the last

zero column from C 2 Rk3k, and G 2 R(k21)3(k21) is the

upper-left (k 2 1) 3 (k 2 1) block of the diagonal matrix

G 2 Rk3k. The deletion of the 0 eigenvalue and the as-

sociated columns in C assure that Z9a 5 Z9aS and therefore

that the analysis mean is given by za. Note that S is

symmetric and ST 5 TS, which assures that Z9a 5 Z9aS

implying that the mean is preserved under the trans-

formation. This is not necessarily true for general en-

semble transform methods of the form (6).

A new forecast Z(t
i11

2 �) is then obtained by propa-

gating Za with the full nonlinear dynamics in (2) to the

next time of observation. The numerical results presented

later in sections 4 and 5 are obtained with this method.

In the next section we will determine how the error

covariance R
w

used in the Kalman filter is linked to the

variance A
clim

of the pseudovariables.

3. Derivation of the variance-limiting Kalman filter

One may naively believe that the error covariance of

the pseudo-observable R
w

is determined by the target

variance of the pseudo-observables Aclim simply by set-

ting Rw 5 Aclim. In the following we will see that this is not

true, and that the expression for Rw, which ensures that

the variance of the pseudo-observables in the analysis is

limited from above by Aclim involves all error covariances.

We formulate the Kalman filter as a minimization

problem of a cost function (e.g., Kalnay 2002). The cost

function for one analysis step as described in section 2

with a given background zf and associated error co-

variance Pf is typically written as

J(z) 5
1

2
(z 2 zf)

T P21
f (z 2 zf)1

1

2
(yo2Hz)T R21

o (yo2 Hz)

1
1

2
(aclim2 hz)T R21

w (aclim 2 hz), (7)

where z is the state variable at one observation time

ti 5 iDtobs. Note that the part involving the pseudo-

observables corresponds to the notion of weak con-

straints in variational data assimilation (Sasaki 1970;

Zupanski 1997; Neef et al. 2006).

The analysis step of the data assimilation procedure

consists of finding the critical point of this cost function.

The thereby obtained analysis z 5 za and the associated

variance P
a

are then subsequently propagated to the

next observation time ti11 to yield zf and P
f

at the next

time step, at which a new analysis step can be performed.

The equation for the critical point with $zJ(z) 5 0 is

readily evaluated to be
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(P21
f 1 HT R21

o H 1 hT R21
w h)za

5 P21
f zf 1 HTR21

o yo1 hTR21
w aclim, (8)

and yields (3) for the analysis mean za, and (5) for the

analysis covariance P
a

with Kalman gain matrices given

by (4).

To control the variance of the unresolved pseudo-

observables aclim 5 hz we set

hPahT 5 Aclim. (9)

Introducing

P21 5 P21
f 1 HT R21

o H, (10)

and upon applying the Sherman–Morrison–Woodbury

formula (e.g., see Golub and Van Loan 1996) to

(P21 1 hTR21
w h)21, (9) yields the desired equation for R

w
:

R21
w 5 A21

clim 2 (hPhT)21, (11)

which is yet again a reciprocal addition formula for var-

iances. Note that the naive expectation that Rw 5 Aclim is

true only for Pf /‘, but is not generally true. For suffi-

ciently small background error covariance Pf , the error

covariance R
w

as defined in (11) is not positive semi-

definite. In this case the information given by the pseudo-

observables has to be discarded. In the language of

variational data assimilation the criterion of positive

definiteness of R21
w determines whether the weak con-

straint is switched on or off. To determine those eigendir-

ections for which the statistical information available can

be incorporated, we diagonalize R21
w 5 VDVT and define D

with D
ii

5 D
ii

for Dii $ 0 and D
ii

5 0 for D
ii

, 0. The

modified R21
w 5 VDVT then uses information of the

pseudo-observables only in those directions that potentially

allow for improvement of the analysis. Noting that P de-

notes the analysis covariance of an ETKF (with Rw 5 0),

we see that (11) states that the variance constraint switches

on for those eigendirections whose corresponding singular

eigenvalues of hPhT are larger than those of Aclim. Hence,

the proposed VLKF as defined here incorporates the cli-

matic information of the unresolved variables in order to

restrict the posterior error covariance of those pseudo-

observables to lie below their climatic variance and to

drive the mean toward their climatological mean.

4. Analytical linear toy model

In this section we study the VLKF for the following

coupled linear skew product system for two oscillators

x 2 R2, y 2 R2:

dx 5 Ax dt 2 Gxx dt 1 sx dWt1 Ly dt

dy 5 By dt 2 Gyy dt 1 sy dBt,

where A, B and L are all skew symmetric; sx, y and Gx, y

are symmetric; and W
t

and B
t

are independent two-

dimensional Brownian processes.2 We assume here for

simplicity that

Gx 5 gxI, Gy 5 gyI, sx 5sxI, sy 5 syI, Ro 5 RobsI,

with the identity matrix I, and

A 5 vxJ, B 5 vyJ, L 5 lJ,

with the skew-symmetric matrix:

J 5

�
0 21

1 0

�
.

Note that our particular choice for the matrices implies

Rw 5 RwI.

The system models two noisy coupled oscillators: x

and y. We assume that we have access to observations of

the variable x at discrete observation times ti 5 iDtobs,

but have only statistical information about the variable

y. We assume knowledge of the climatic mean mclim and

the climatic covariance s2
clim of the unobserved variable

y. The noise is of Ornstein–Uhlenbeck type (Gardiner

2004), and may represent either model error or param-

eterize highly chaotic nonlinear dynamics. Without loss

of generality, the coupling is chosen such that the y dy-

namics drives the x dynamics but not vice versa. The

form of the coupling is not essential for our argument,

and it may be oscillatory or damping with L 5 lI. We write

this system in the more compact form for z 5 (x, y) 2 R4:

dz 5 Mz dt 2 Gz dt 1 s dWt 1 Cz dt, (12)

with

M 5

�
A 0

0 B

�
G 5

 
Gx 0

0 Gy

!

s 5

 
sx 0

0 sy

!
C 5

�
0 L

0 0

�
.

The solution of (12) can be obtained using Ito’s formula

and, introducing the propagator L(t) 5 exp[(M 2 G 1 C)t],

which commutes with s for our choice of the matrices, is

given by

2 We will use bold font for matrices and vectors, and regular font

for scalars. It should be clear from the context whether bold fonts

refer to a matrix or a vector.
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z(t) 5 L(t)z01 s

ðt

0
L(t 2 s) dWs,

with mean

m(t) 5 L(t)z0,

and covariance

S(t) 5 s(2G 2 C)21fI 2 exp[2(2G 2 C)t]gsT, (13)

where

C5

�
0 L

2L 0

�
.

The climatic mean mclim 2 R
4 and covariance matrix

Sclim 2 R
434 are then obtained in the limit t / ‘ as

mclim 5 lim
t/‘

m(t) 5 0,

and

Sclim 5 lim
t/‘

S(t)5s(2G2C)21sT.

In order for the stochastic process (12) to have a sta-

tionary density and for S(t) to be a positive definite

covariance matrix for all t, the coupling has to be suffi-

ciently small with l2 , 4gxgy. Note that the skew

product nature of the system (12) is not special in the

sense that a nonskew product structure where x couples

back to y would simply lead to a renormalization of C.

However, it is pertinent to mention that although in the

actual dynamics of the model (12) there is no back

coupling from x to y, the Kalman filter generically in-

troduces back coupling of all variables through the in-

version of the covariance matrices [cf. (5)].

We will now investigate the variance-limiting Kalman

filter for this toy model. In particular we will first analyze

under what conditions R
w

is positive definite and the

variance constraint will be switched on, and second we

will analyze when the VLKF yields a skill improvement

when compared to the standard ETKF.

We start with the positive definiteness of Rw. When

calculating the covariance of the forecast in an ensemble

filter we need to interpret the solution of the linear toy

model (12) as

zj(ti11) 5
d

L(Dtobs)zj(ti)

1 s

ðDt
obs

0
L(Dtobs 2 s) dWs, j j 5 1, 2, . . . , k,

where zj(ti11) is the forecast of ensemble member j at

time ti11 5 ti 1 Dtobs 5 (i 1 1)Dtobs before the analysis

propagated from its initial condition z
j
(t

i
) 5 z

a
(t

i
) 1 j

j

with jj ;N [0, Pa(ti)] at the previous analysis. The

equality here is in distribution only (i.e., members of the

ensemble are not equal in a pathwise sense as their

driving Brownian will be different, but they will have the

same mean and variance). The covariance of the fore-

cast can then be obtained by averaging with respect to

the ensemble and with respect to realizations of the

Brownian motion, and is readily computed as

Pf (ti11) 5 L(Dtobs)Pa(ti)L
T(Dtobs) 1 S(Dtobs), (14)

where LT(t) 5 exp[(2M 2 G 1 CT)t] denotes the trans-

pose of L(t). The forecast covariance of an ensemble

with spread P
a

is typically larger than the forecast co-

variance S of one trajectory with a nonrandom initial

condition z0. The difference is most pronounced for small

observation intervals when the covariance of the ensem-

ble Pf will be close to the initial analysis covariance Pa,

whereas a single trajectory will not have acquired much

variance S. In the long-time limit, both, P
f

and S, will

approach the climatic covariance Sclim [cf. (13)].

In the following we restrict ourselves to the limit of

small observation intervals Dtobs � 1. In this limit, we

can approximate Pa(ti) ’ Pf (ti11) and explicitly solve

the forecast covariance matrix Pf using (14). This as-

sumption requires that the analysis is stationary in the

sense that the filter has lost its memory of its initial

background covariance provided by the user to start up

the analysis. We have verified the validity of this as-

sumption for small observation intervals and for a range

of initial background variances. This assumption renders

(14) a matrix equation for Pf . To derive analytical ex-

pressions we further Taylor-expand the propagator

L(Dtobs) and the covariance S(Dtobs) for small observa-

tion intervals Dtobs. This is consistent with our statio-

narity assumption P
a
(t

i
) ’ P

f
(t

i11
). The very lengthy

analytical expression for P
f
(t

i11
) can be obtained with

the aid of Mathematica (Wolfram Research, Inc. 2008),

but is omitted from this paper.

In filtering one often uses variance inflation (Anderson

and Anderson 1999) to compensate for the loss of en-

semble variance due to finite-size effects, sampling errors,

and the effects of nonlinearities. We do so here by in-

troducing an inflation factor d . 1 multiplying the forecast

variance P
f
. Having determined the forecast covariance

matrix P
f

we are now able to write down an expression for

the error covariance of the pseudo-observables Rw. As

before we limit the variance and the mean of our pseudo-

observable y to be Aclim 5 s2
clim and aclim 5 mclim. Then,
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upon using the definitions (10) and (11), we find that the

error covariance for the pseudo-observables R
w

is positive

definite provided the observation interval Dtobs is suffi-

ciently large.3 Particularly, in the limit of Ro/‘, we find

that if

Dtobs(d) .
dl2 1 4gxgy(1 2 d)

2gx(1 1 g2
y)

, (15)

the variance constraint will be switched on. Note that for

d . 1 the critical Dtobs above which Rw is positive definite

can be negative, implying that the variance constraint

will be switched on for all (positive) values of Dtobs. If no

inflation is applied (i.e., d 5 1), this simplifies to

Dtobs .
l2

2gx(1 1 g2
y)

. 0: (16)

Because 4gxgy 2 l2 . 0 the critical observation interval

Dtobs is smaller for nontrivial inflation with d . 1 than if

no variance inflation is incorporated. This is intuitive,

because the variance inflation will increase instances

with jhP
a
hTj . js2

climj. We have numerically verified

that inflation is beneficial for the variance constraint to

be switched on. It is pertinent to mention that for suffi-

ciently large coupling strength l or sufficiently small

values of gx, (16) may not be consistent with the as-

sumption of small observation intervals Dtobs� 1.

We have checked analytically that the derivative of

R21
w is positive at the critical observation interval Dtobs,

indicating that the frequency of occurrence when the

variance constraint is switched on increases monotonically

with the observation interval Dtobs, in the limit of small

Dtobs. This has been verified numerically with the appli-

cation of VLKF for (12) and is illustrated in Fig. 1.

At this stage it is important to mention effects due to

finite-size ensembles. For large observation intervals

Dtobs / ‘ and large observational noise R
o
/‘, we have

P
f
/S

clim
and our analytical formulas would indicate

that the variance constraint should not be switched on

[cf. (10) and (11)]. However, in numerical simulations of

the Kalman filter we observe that for large observation

intervals the variance constraint is switched on for al-

most all analysis times. This is a finite-ensemble-size

effect and is due to the mean of the forecast variance

ensemble adopting values larger than the climatic value

of sclim implying positive definite values of R
w

. The closer

the ensemble mean approaches the climatic variance, the

more likely fluctuations will push the forecast covariance

above the climatic value. However, we observe that the

actual eigenvalues of Rw decrease for Dtobs / ‘ and for

the size of the ensemble k / ‘.

The analytical results obtained above are for the ideal

case with k / ‘. As mentioned in the introduction, in

sparse observation networks finite ensemble sizes cause

the overestimation of error covariances (Liu et al. 2008;

Whitaker et al. 2009), implying that R
w

is positive defi-

nite and the variance-limiting constraint will be switched

on. This finite-size effect is illustrated in Fig. 2, where the

maximal singular value of hPahT, averaged over 50 re-

alizations, is shown for ETKF as a function of ensemble

size k for different observational noise variances. Here

we used no inflation (i.e., d 5 1) in order to focus on the

effect of finite ensemble sizes. It is clearly seen that the

projected covariance decreases for large enough en-

semble sizes. The variance will asymptote from above to

hSclimhT in the limit k / ‘. For sufficiently small ob-

servational noise, the filter corrects too large forecast

error covariances by incorporating the observations into

the analysis leading to a decrease in the analysis error

covariance.

However, the fact that the variance constraint is

switched on does not necessarily imply that the variance-

limiting filter will perform better than the standard

ETKF. In particular, for very large observation intervals

Dtobs when the ensemble will have acquired the climatic

mean and covariances, VLKF and ETKF will have equal

FIG. 1. Proportion of incidences when the variance constraint is

switched on and Rw is positive definite as a function of the obser-

vation interval Dtobs for the stochastic linear toy model in (12). We

used gx 5 1, gy 5 1, sx 5 1, sy 5 1, and l 5 0.2. We used k 5 20

ensemble members, 100 realizations and R
o

5 HS
clim

HT, and no

inflation with d 5 1. The analytically calculated critical observation

interval according to (16) is Dtobs 5 1022.

3 We actually compute R21
w , however, since R

w
is diagonal for

our choice of the matrices, positive definiteness of R21
w implies

positive definiteness of Rw.
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skill. We now turn to the question under what conditions

VLKF is expected to yield improved skill compared to

standard ETKF. To this end we introduce as skill in-

dicator the (squared) RMS error:

E5Et,Wkza(ti) 2 ztruth(ti)k
2
G

(17)

between the truth ztruth and the ensemble mean analysis

z
a

(the square root is left out here for convenience of

exposition). Here Et denotes the temporal average over

analyzes cycles, and E
W denotes averaging over dif-

ferent realizations of the Brownian paths W. We in-

troduced the norm kabkG 5 aTGb to investigate the

overall skill using G 5 I, the skill of the observed vari-

ables using G 5 HTH and the skill of the pseudo-

observables using G 5 hTh. Using the Kalman filter (3)

for the analysis mean with K
w

5 0, we obtain for the

ETKF:

EETKF 5Et,Wk(I2KoH)[zf (ti) 2 ztruth(ti)] 1 Koro(ti)k
2

G
.

Solving the linear toy model (12) for each member of the

ensemble and then performing an ensemble average, we

obtain

zf (ti) 5 L(Dtobs)za(ti21). (18)

Substituting a particular realization of the truth ztruth(t),

and performing the average over the realizations, we

finally arrive at

EETKF 5Etk(I 2 KoH)L(Dtobs)jt
i21
k2

G

1 E
tk(I 2 KoH)ht

i

k2

G
1 E

tkKorok
2
G

, (19)

with the mutually independent normally distributed ran-

dom variables:

jt
i
5 za(ti) 2 ztruth(ti) ;N [0, Pa(ti)]

ht
i

5 s

ðt
i

t
i21

L(Dtobs 2 s) dWs ;N [0, S(Dtobs)]

ro ;N (0, Ro). (20)

We have numerically verified the validity of our as-

sumptions of the statistics of j
ti

and h
ti
. Note that for j

ti
to have mean zero and variance P

a
(t

i
) filter divergence

has to be excluded. Similarly we obtain for the VLKF

«VLKF 5Etk(I2KoH)L(Dtobs)jt
i21
k2

G
1 E

tk(I2KoH)ht
i
k2

G

1 E
tkKorok

2
G

1 E
tkKwhzt

i

k2
G

12Etf[(I2KoH)L(Dtobs)jt
i21

]TG[Kwhzt
i
]g,

(21)

with the normally distributed random variable:

zt
i

5 zf (ti) ;N
�

0,
1

k
Pf (ti)

�
, (22)

where we used that aclim 5 0. Note that using our statio-

narity assumption to calculate P
f

we have z
ti

;
d

(1/k)j
ti 2 1

.

Again we have numerically verified the statistics for z
ti
.

The expression for the RMS error of the VLKF (21) can be

considerably simplified. Since for large ensemble sizes

k / ‘ the random variable zti
becomes a deterministic

variable with mean zero, we may neglect all terms con-

taining zti
. We summarize to

EVLKF 5Etk(I 2 KoH)L(Dtobs)jt
i21
k2

G

1 E
tk(I 2 KoH)ht

i

k2

G
1 E

tkKorok
2
G

. (23)

For convenience we have omitted superscripts for Ko

and jti21
in (19) and (23) to denote whether they have

been evaluated for ETKF and VLKF. But note that,

although the expressions in (19) and (23) are formally

the same, one generally has EETKF 6¼ EVLKF, because the

analysis covariance matrices P
a

are calculated differ-

ently for both methods leading to different gain matrices

K
o

and different statistics of jt in (19) and (23).

We can now estimate the skill improvement defined as

S5 EETKF/EVLKF

FIG. 2. Average maximal singular value of hP
a
hT as a function of

ensemble size k for the stochastic linear toy model in (12) using

standard ETKF without inflation, with Ro 5 0:25 (dashed curve)

and R
o

5 2 (solid curve). Parameters are sx 5 sy 5 gx 5 gy 5 1, l 5

0.2, Dtobs 5 1, for which the climatic variance is hShT ’ 0.505. We

used 50 realizations for the averaging.
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with values of S. 1 indicating skill improvement of

VLKF over ETKF. We shall choose G 5 hTh from now

on, and concentrate on the skill improvement for the

pseudo-observables. Recalling that EETKF ’ EVLKF for

large observation intervals Dtobs, we expect skill im-

provement for small Dtobs. We perform again a Taylor

expansion in small Dtobs of the skill improvement

S. The resulting analytical expressions are very lengthy

and cumbersome, and are therefore omitted for con-

venience.

We found that there is indeed skill improvement S. 1

in the limit of either gy / ‘ or gx / 0. This suggests that

the skill is controlled by the ratio of the time scales of

the observed and the unobserved variables. If the time

scale of the pseudo-observables is much larger than the

one of the observed variables, VLKF will exhibit supe-

rior performance over ETKF. This can be intuitively

understood since 1/(2gy) is the time scale on which equi-

librium (i.e. the climatic state) is reached for the pseudo-

observables y. If the pseudo-observables have relaxed

toward equilibrium within the observation interval Dtobs,

and their variance has acquired the climatic covariance

hPahT 5 s2
clim, we expect the variance limiting to be

beneficial.

Furthermore, we found analytically that the skill im-

provement increases with increasing observational noise

Robs (at least in the small observation interval approxi-

mation). In particular we found that ›S/›Robs . 0 at

Robs 5 0. The increase of skill with increasing observa-

tional noise can be understood phenomenologically in

the following way. For Robs 5 0 the filter trusts the ob-

servations, which as a time series carry the climatic co-

variance. This implies that there is a realization of the

Wiener process such that the analysis can be reproduced

by a model with the true values of gx,y and sx,y. Similarly,

this is the case in the other extreme Robs / ‘, where the

filter trusts the model. For 0 � Robs � ‘ the analysis

reproducing system would have a larger covariance sx

than the true value. This slowed-down relaxation to-

wards equilibrium of the observed variables can be in-

terpreted as an effective decrease of the damping

coefficient gx. This effectively increases the time-scale

separation between the observed and the unobserved

variables, which was conjectured above to be beneficial

for skill improvement.

As expected, the skill improves with increasing in-

flation factor d . 1. The improvement is exactly linear

for Dtobs / ‘. This is due to the variance inflation

leading to an increase of instances with hP
a
hT . s2

clim,

for which the variance constraint will be switched on.

In Fig. 3 we present a comparison of the analytical

results (19) and (23) with results from a numerical im-

plementation of ETKF and VLKF for varying damping

coefficient gy. Since gy controls the time scale of the y

process, we cannot use the same Dtobs for a wide range

of gy in order not to violate the small observation in-

terval approximations used in our analytical expres-

sions. We choose Dtobs as a function of gy such that the

singular values of the first-order approximation of the

forecast variance is a good approximation for this Dtobs.

For Fig. 3 we have Dtobs 2 (0.005, 0.01) to preserve the

validity of the Taylor expansion. Besides the increase

of the skill with gy, Fig. 3 shows that the value of S
increases significantly for larger values of the inflation

factor d . 1.

We will see in the next section that the results we

obtained for the simple linear toy model (12) hold as

well for a more complicated higher-dimensional model,

where the dynamic Brownian driving noise is replaced

by nonlinear chaotic dynamics.

FIG. 3. Dependency of the skill improvement S of VLKF over

ETKF on the damping coefficient gy of the pseudo-observable. We

show a comparison of direct numerical simulations (open circles)

with analytical results using (21) (continuous curve) and the ap-

proximation of large ensemble size in (23) (dashed curve). Pa-

rameters are gx 5 1, l 5 2, sx 5 sy 5 1, and Robs 5 0.25. We used an

ensemble size of k 5 20 and averaged over 1000 realizations. (a) No

inflation with d 5 1. (b) Inflation with d 5 1.022.
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5. Numerical results for the Lorenz-96 system

We illustrate our method with the Lorenz-96 system

(Lorenz 1996) and show its usefulness for sparse ob-

servations in improving the analysis skill and stabilizing

the filter. In Lorenz (1996), Lorenz proposed the fol-

lowing model for the atmosphere:

_zi 5 zi21(zi11 2zi22)2 zi 1 F i 5 1, . . . , D (24)

with z 5 (z1, . . . , zD) and periodic zi1D 5 zi. This system

is a toy model for midlatitude atmospheric dynamics,

incorporating linear damping, forcing and nonlinear

transport. The dynamical properties of the Lorenz-96

system have been investigated (e.g., Lorenz and Emanuel

1998; Orrell and Smith 2003; Gottwald and Melbourne

2005), and in the context of data assimilation it was

also investigated (e.g., Ott et al. 2004; Fisher et al. 2005;

Harlim and Majda 2010). We use D 5 40 modes and set

the forcing to F 5 8. These parameters correspond to a

strongly chaotic regime (Lorenz 1996). For these pa-

rameters one unit of time corresponds to 5 days in the

earth’s atmosphere as calculated by calibrating the

e-folding time of the asymptotic growth rate of the most

unstable mode with a time scale of 2.1 days (Lorenz

1996). Assuming the length of a midlatitude belt to be

about 30 000 km, the spatial scale corresponding to a

discretization of the circumference of the earth along

the midlatitudes in D 5 40 grid points corresponds to

a spacing between adjacent grid points zi of approxi-

mately 750 km, roughly equalling the Rossby radius of

deformation at midlatitudes. We estimated from sim-

ulations the advection velocity to be approximately

10.4 m s21, which compares well with typical wind ve-

locities in the midlatitudes.

In the following we will investigate the effect of using

VLKF on improving the analysis skill when compared to

a standard ensemble transform Kalman filter, and on

stabilizing the filter and avoiding blow-up as discussed in

(Ott et al. 2004; Kepert 2004; Harlim and Majda 2010).

We perform twin experiments using a k 5 41-member

ETKF and VLKF with the same truth time series, the

same set of observations, and the same initial ensemble.

We have chosen an ensemble with k . D in order to

eliminate the effect that a finite-size ensemble can only

fit as many observations as the number of its ensemble

members (Lorenc 2003). Here we want to focus on the

effect of limiting the variance.

The system is integrated using the implicit midpoint

rule (e.g., see Leimkuhler and Reich 2005) to a time T 5

30 with a time step dt 5 1/240. The total time of in-

tegration corresponds to an equivalent of 150 days, and

the integration time step dt corresponds to half an hour.

We measured the approximate climatic mean and var-

iance, mclim and s2
clim, respectively, via a long time in-

tegration over a time interval of T 5 2000, which

corresponds roughly to 27.5 yr. Because of the sym-

metry of the system (24), the mean and the standard

deviation are the same for all variables zi and are

measured to be sclim 5 3.63 and mclim 5 2.34.

The initial ensemble at t 5 0 is drawn from an ensemble

with variance s2
clim; the filter was then subsequently spun

up for sufficiently many analysis cycles to ensure statis-

tical stationarity. We assume Gaussian observational

noise of the order of 25% of the climatological standard

deviation sclim, and set the observational error covari-

ance matrix Ro 5 (0:25sclim)2I. We find that for larger

observational noise levels the variance-limiting correc-

tion (11) is used more frequently. This is in accordance

with our finding in the previous section for the toy model.

We study first the performance of the filter and its

dependence on the time between observations Dtobs

and the proportion of the system observed 1/Nobs. Here

Nobs 5 2 means only every second variable is observed,

Nobs 5 4 only every fourth, and so on.

We have used a constant variance inflation factor d 5

1.05 for both filters. We note that the optimal inflation

factor at which the RMS error E is minimal, is differ-

ent for VLKF and ETKF. For Dtobs 5 5/120 (5 h) and

Nobs 5 4 we find that d 5 1.06 produces minimal RMS

errors for VLKF and d 5 1.04 produces minimal RMS

errors for ETKF. For d , 1.04, filter divergence occurs in

ETKF, so we chose d 5 1.05 as a compromise between

controlling filter divergence and minimizing the RMS

errors of the analysis.

Figure 4 shows a sample analysis using ETKF with

Nobs 5 5, Dtobs 5 0.15, and R
o

5 (0:25s
clim

)2I for an

arbitrary unobserved component (top panel) and an

arbitrary observed component (bottom panel) of the

Lorenz-96 model. While the figure shows that the anal-

ysis (continuous gray line) tracks the truth (dashed line)

reasonably well for the observed component, the anal-

ysis is quite poor for the unobserved component. Sub-

stantial improvements are seen for the VLKF when

we incorporate information about the variance of the

unobserved pseudo-observables, as can be seen in

Fig. 5. We set the mean and the variance of the pseudo-

observables to be the climatic mean and variance, aclim 5

mclime and Aclim 5 s2
climI to filter the same truth with the

same observations as used to produce Fig. 4. For these

parameters (and in this realization) the quality of the

analysis in both the observed and unobserved compo-

nents is improved.

As for the linear toy model (12), finite ensemble sizes

exacerbate the overestimation of error covariances. In

Fig. 6 the maximal singular value of hPahT, averaged
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over 150 realizations, is shown for ETKF as a function of

ensemble size k. Again we use no inflation (i.e., d 5 1) in

order to focus on the effect of finite ensemble sizes. The

projected covariance clearly decreases for large enough

ensemble sizes. However, here the limit of the maximal

singular value of hP
a
hT for k / ‘ underestimates the

climatic variance s2
clim 5 13:18.

To quantify the improvement of the VLKF filter we

measure the site-averaged RMS error:

E5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

LDo

�
L

l51

��za(lDtobs) 2 ztruth(lDtobs)
��2
	vuut

, (25)

between the truth ztruth and the ensemble mean za with

L 5 bT/Dtobsc, where the average is taken over 500 dif-

ferent realizations, and Do # D denotes the length of the

vectors za. In Table 1 we display E for the ETKF and

VLKF, respectively, as a function of Nobs and Dtobs. The

increased RMS error for larger observation intervals

Dtobs can be linked to the increased variance of the

chaotic nonlinear dynamics generated during longer

integration times between analyses. Figure 7 shows the

average proportional improvement of the VLKF over

ETKF, obtained from the values of Table 1. Figure 7

shows that the skill improvement is greatest when the

system is observed frequently. For large observation

FIG. 4. Sample ETKF analysis (continuous gray line) for the (top) unobserved z1 and (bot-

tom) observed z5 component. The dashed line is the truth and the crosses are observations.

Parameters used were Nobs 5 5, Dtobs 5 0.15 (18 h), and R
o

5 (0:25s
clim

)2I.

FIG. 5. Sample VLKF analysis (continuous gray line) for the (top) unobserved z1 and

(bottom) observed z5 component. The dashed line is the truth and the crosses are observations.

Parameters are as in Fig. 4.
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intervals Dtobs ETKF and VLKF yield very similar RMS.

We checked that for large observation intervals Dtobs

both filters still produce tracking analyses. Note that the

observation intervals Dtobs considered here are all much

smaller than the e-folding time of 2.1 days. The most

significant improvement occurs when one-quarter of the

system is observed, that is for Nobs 5 4, and for small

observation intervals Dtobs. The dependency of the skill

of VLKF on the observation interval is consistent with

our analytical findings in section 4.

We have checked that the increase in skill as depicted

in Fig. 7 is not sensitive to incomplete knowledge of

the statistical properties of the pseudo-observables by

perturbing Aclim and aclim and then monitoring the

change in RMS error. We performed simulations where

we drew Aclim and aclim independently from uniform

distributions (0:9Aclim, 1:1Aclim) and (0.9aclim, 1.1aclim).

We found that for parameters Nobs 5 2, 4, 6; h 5 0.05,

0.25, 0.5 [with h measuring the amount of the climatic

variance used through R
o

5 (hs
clim

)2I]; and Dtobs 5

0.025, 0.05, 0.25 (corresponding to 3, 6, and 30 h) over

a number of simulations, there was on average no more

than 7% difference of the analysis mean and the singular

values of the covariance matrices between the control

run where Aclim 5 s2
climI and aclim 5 mclime is used, and

when A
clim

and aclim are simultaneously perturbed.

An interesting question is how the relative skill

improvement is distributed over the observed and

FIG. 6. Average maximal singular value of hPahT as a function of

ensemble size k for the Lorenz-96 model in (24), using standard

ETKF without inflation and all other parameters are as in Fig. 4.

We used 150 realizations for the averaging.

TABLE 1. RMS errors for (top) ETKF and (bottom) VLKF for different values of Nobs and observational interval Dtobs, averaged over 500

simulations, and with R
o

5 (0:25s
clim

)2I as observational noise.

Nobs

Dtobs

3 h 6 h 9 h 12 h 15 h 18 h 21 h 24 h 27 h 30 h

6 4.40 3.64 3.42 3.32 3.29 3.30 3.30 3.28 3.26 3.26

5 4.08 2.88 2.70 2.83 3.02 3.07 3.17 3.21 3.19 3.20

4 2.42 1.17 1.35 1.72 2.18 2.37 2.62 2.84 2.98 3.06

3 0.49 0.51 0.60 0.71 0.89 1.11 1.38 1.68 2.02 2.25

2 0.31 0.34 0.38 0.43 0.49 0.55 0.66 0.75 0.90 1.13

1 0.19 0.21 0.24 0.26 0.29 0.31 0.33 0.36 0.39 0.44

6 3.20 3.09 3.10 3.15 3.20 3.22 3.27 3.27 3.26 3.27

5 2.73 2.28 2.51 2.70 2.89 3.03 3.07 3.14 3.15 3.15

4 1.30 1.03 1.28 1.66 2.04 2.29 2.55 2.70 2.88 2.96

3 0.48 0.51 0.59 0.70 0.87 1.07 1.39 1.71 1.95 2.21

2 0.31 0.34 0.38 0.44 0.50 0.56 0.64 0.77 0.95 1.14

1 0.19 0.21 0.24 0.26 0.29 0.31 0.33 0.36 0.39 0.44

FIG. 7. Proportional skill improvement of VLKF over ETKF as

a function of the observation interval Dtobs for different values of

Nobs, with observational noise Ro 5 (0:25sclim)2I. A total of 500

simulations were used to perform the ensemble average in the

RMS errors E using (25) for ETKF and VLKF. Dtobs is measured in

hours.
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unobserved variables. This is illustrated in Figs. 8 and

9. In Fig. 8 we show the proportional skill improve-

ment of VLKF over ETKF for the observed variables

and the pseudo-observables, respectively. Figure 8

shows that the skill improvement is larger for the pseudo-

observables than for the observables, which is to be ex-

pected. In Fig. 9 we show the actual RMS error E for

ETKF and VLKF for the observed variables and the

pseudo-observables. It is shown that the skill improve-

ment is better for the unobserved pseudo-observables

for all observation intervals Dtobs. In contrast, VLKF

exhibits an improved skill for the observed variables

either for small observation intervals for all values of

Nobs or for all observation intervals when Nobs 5 4, 5.

We have, however, checked that the analysis is still

tracking the truth reasonably well, and the discrepancy

with ETKF is not due to the analysis not tracking the

truth anymore. As expected, the RMS error asymptotes

for large observation intervals Dtobs (not shown) to the

standard deviation of the observational noise 0.25sclim ’

0.910 for the observables, and to the climatic standard

deviation sclim 5 3.63 for the pseudo-observable (not

shown), albeit slightly reduced for small values of Nobs

due to the impact of the surrounding observed variables

(see Fig. 10).

Note that there is an order of magnitude difference

between the RMS errors for the observables and the

pseudo-observables for large Nobs (cf. Fig. 9). This sug-

gests that the information of the observed variables does

not travel too far away from the observational sites.

However, the nonlinear coupling in the Lorenz-96 sys-

tem in (24) allows for information of the observed

components to influence the error statistics of the un-

observed components. Therefore the RMS errors of

pseudo-observables adjacent to observables are better

than those far away from observables. Moreover, the spe-

cific structure of the nonlinearity introduces a translational

symmetry breaking (one may think of the nonlinearity

as a finite-difference approximation of an advection

term zzx), which causes those pseudo-observables to

the right of an observable to have a more reduced RMS

error than those to the left of an observable. This is

illustrated in Fig. 10 where the RMS error is shown for

FIG. 8. Proportional skill improvement of VLKF over ETKF as

a function of the observation interval Dtobs for different values of

Nobs. The RMS error E is calculated using (a) only the observed

variables or (b) only the pseudo-observables. Dtobs is measured in

hours. Parameters are as in Fig. 7.

FIG. 9. RMS error of VLKF (solid lines) and ETKF (dashed

lines) for Ro 5 (0:25sclim)2I, where E is calculated using (a) only the

observed variables or (b) only the pseudo-observables. Dtobs is

measured in hours. Parameters are as in Fig. 7.
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each site when only one site is observed. The advective

time scale of the Lorenz-96 system is much smaller than

Dtobs, which explains why the skill is not equally dis-

tributed over the sites, and why, especially for large

values of Nobs, we observe a big difference between the

site-averaged skills of the observed and unobserved

variables.

In Fig. 11 we show how the RMS error behaves as

a function of the observational noise level. We see that

for Nobs 5 4, VLKF always has a smaller RMS error than

ETKF.

The results confirm again the results from our analysis

of the toy model in section 4, which is that VLKF yields

best performance for small observation intervals Dtobs

and for large noise levels. For large observation intervals

ETKF and VLKF perform equally well, since then the

chaotic model dynamics will have lead the ensemble to

have acquired the climatic variance during the time of

propagation.

In Ott et al. (2004) it was observed that if not all

variables zi are observed the Kalman filter diverges ex-

hibiting blow-up. Similar behavior was observed in

Harlim and Majda (2010). In Ott et al. (2004) the au-

thors suggested that the sparsity of observations leads to

an inhomogeneous background error, which causes an

underestimation of the error covariance. Here we study

this catastrophic blow-up divergence (as opposed to

filter divergence when the analysis diverges from the

truth) and its dependence on the time between obser-

vations Dtobs and the proportion of the system observed

1/Nobs. We note that blow-up divergence appears only in

the case of sufficiently small observational noise and

moderate values of Dtobs. Once Dtobs is large enough (in

fact, larger than the e-folding time corresponding to the

most unstable Lyapunov exponent, in our case 2.1 days)

FIG. 10. RMS error E for each variable zi as a function of the

lattice site i. Only one observable was used at i 5 21. Time between

observations is Dtobs 5 10 h and observational noise with co-

variance Ro 5 (0:25sclim)2I was used. The results are averaged over

100 different realizations.

FIG. 11. RMS error E for VLKF (solid lines) and ETKF (dashed

lines), as a function of the observational noise, measured here by

h defined via Ro 5 (hsclim)2I. The dashed–dotted line indicates the

RMS error if only observations were used. Results for several

observation intervals: (a) Dtobs 5 1 h, (b) Dtobs 5 2 h, and (c)

Dtobs 5 5 h; Nobs 5 4 was used and 1000 simulations were carried

out to perform the ensemble averages in the RMS errors E using

(25) for ETKF and VLKF.

AUGUST 2011 G O T T W A L D E T A L . 2663



we notice that no catastrophic divergence occurs, in-

dependent of Nobs. This probably occurs because for large

observation intervals the ensemble acquires enough vari-

ance through the nonlinear propagation. We prescribe

Gaussian observational noise of the order of 5% of the

climatological standard deviation sclim, and set the obser-

vational error covariance matrix to Ro 5 (0:05sclim)2I. The

initial ensemble at t 5 0 is drawn again from an ensemble

with variance s2
clim.

To study the performance of VLKF when blow-up

occurs in ETKF simulations we count the number Nb of

blow-ups that occur before a total of 100 simulations

have terminated without blow-up. The proportions of

blow-ups for the respective filters is then given by Nb/

(Nb1100). We tabulate this proportion in Table 2 for the

ETKF and VLKF, respectively, and the proportional

improvement in Table 3. The 3s in the table represent

cases where no successful simulations could be obtained

due to blow-up.

Both filters suffer from severe filter instability for

Nobs 5 6 (i.e., for very sparse observational networks),

at small observation intervals Dtobs. No blow-up occurs

for either filter when every variable is observed. Note the

reduction in occurrences of blow-ups for large observa-

tion intervals Dtobs as discussed above. We have checked

that for all Nobs there is no blow-up for ETKF (and

VLKF) for sufficiently large Dtobs (not shown); the larger

Nobs the smaller the upper bound of Dtobs such that no

blow-ups occur. Collapse is most prominent for ETKF

(and for VLKF, but to a much lesser extent) for larger

values of Nobs and at intermediate observation in-

tervals that depend on Nobs. Tables 2 and 3 clearly show

that incorporating information about the pseudo-

observables strongly increases the stability of the filter

and suppresses blow-up. However, we note that despite

the gain in stability VLKF has a skill less than the purely

observational skill in the cases when blow-up occurs

for ETKF, because the solutions become nontracking.

Further research is under way to improve on this in the

VLKF framework.

The fact that incorporating information about the

variance of the unobserved variables improves the sta-

bility of the filter is in accordance with the interpretation

of filter divergence of sparse observational networks

provided in Ott et al. (2004).

6. Discussion

We have developed a framework to include infor-

mation about the variance of unobserved variables in

TABLE 2. Proportion of catastrophically diverging simulations with (top) ETKF and (bottom) VLKF for different values of Nobs and

observation interval Dtobs. Observational noise with R
o

5 (0:05s
clim

)2I was used.

Nobs

Dtobs

3 h 6 h 9 h 12 h 15 h 18 h 21 h 24 h 27 h 30 h

6 0.14 3 3 0.98 0.96 0.76 0.32 0.05 0.02 0.01

5 0.02 0.40 0.67 0.73 0.84 0.89 0.94 0.82 0.49 0.19

4 0 0.04 0.22 0.29 0.49 0.64 0.77 0.83 0.89 0.82

3 0 0 0 0.03 0.04 0.11 0.15 0.44 0.58 0.67

2 0 0 0 0 0 0.01 0 0.01 0.05 0.15

6 0.01 0.42 0.11 0.01 0 0 0 0 0 0

5 0 0.24 0.36 0.10 0.01 0 0 0 0 0

4 0 0.03 0.22 0.12 0.06 0.02 0 0 0 0

3 0 0 0 0.02 0 0.01 0.01 0.01 0 0

2 0 0 0 0 0 0 0 0 0 0.01

TABLE 3. Proportional improvement of VLKF and ETKF as calculated as the ratio of the values from Table 2.

Nobs

Dtobs

3 h 6 h 9 h 12 h 15 h 18 h 21 h 24 h 27 h 30 h

6 14 3 3 98.00 ‘ ‘ ‘ ‘ ‘ ‘

5 ‘ 1.67 1.86 7.30 84.00 ‘ ‘ ‘ ‘ ‘

4 1 1.33 1.00 2.42 8.17 32.00 ‘ ‘ ‘ ‘

3 1 1 1 1.5 ‘ 11.00 15.00 44.00 ‘ ‘

2 1 1 1 1 1 ‘ 1 ‘ ‘ 15.00
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a sparse observational network. The filter is designed to

control overestimation of error covariances typical in

sparse observation networks, and limits the posterior

analysis covariance of the unresolved variables to stay

below their climatic variance. We have done so in a

variational setting and found a relationship between the

error covariance of the variance constraint Rw and the

assumed target variance of the unobserved pseudo-

observables A
clim

.

We illustrated the beneficial effects of the variance-

limiting filter in improving the analysis skill when com-

pared to the standard ensemble square root Kalman

filter. We expect the variance-limiting constraint to im-

prove data assimilation for ensemble Kalman filters

when finite-size effects of too small ensemble sizes

overestimate the error covariances, in particular in

sparse observational networks. In particular we found

that the skill will improve for small observation intervals

Dtobs and sufficiently large observational noise. We

found substantial skill improvement for both observed

and unobserved variables. These effects can be unde-

stood with a simple linear toy model that allows for an

analytical treatment. We further established numeri-

cally that VLKF reduces the probability of catastrophic

filter divergence and improves the stability of the filter

when compared to the standard ensemble square root

Kalman filter.

We remark that the idea of the variance-limiting Kal-

man filter is not restricted to ensemble Kalman filters,

but can also be used to modify the extended Kalman fil-

ter. However, for the examples we used here the non-

linearities were too strong and the extended Kalman filter

did not yield satisfactory results, even in the variance-

limiting formulation.

The effect of the variance-limiting filter to control

unrealistically large error covariances of the poorly re-

solved variables due to finite ensemble sizes may find

useful applications. We mention here that the variance

constraint is able to adaptively damp unrealistic excita-

tion of ensemble spread in underresolved spatial regions

due to inappropriate uniform inflation. This may be an

alternative to the spatially adaptive schemes which were

recently developed (Anderson 2007; Li et al. 2009). In

addition, it is known that localization of covariance

matrices in EnKF leads to imbalance in the analyzed

fields (e.g., see Houtekamer and Mitchell 2005; Kepert

2009 for recent studies). Filter localization typically ex-

cites unwanted gravity waves that when uncontrolled

can substantially degrade filter performance. One may

construct balance constraints as pseudo-observations

and thereby potentially reduce this undesired aspect of

covariance localization. As more specific applications,

we mention climate reanalysis and data assimilation for

the mesosphere. It would be interesting to see how the

proposed variance-limiting filter can be used in climate

reanalysis schemes to deal with the vertical sparcity of

observational data and the less dense observation net-

work on the Southern Hemisphere in the preradiosonde

era (see Whitaker et al. 2004). One would need to es-

tablish though whether the historical observation in-

tervals Dtobs are sufficiently small to allow for a skill

improvement. Similarly, it may help to control the dy-

namically dominant gravity wave activity in the meso-

sphere as the upper lid is pushed farther and farther

(e.g., see Polavarapu et al. 2005). However, a word of

caution is required here. In some atmospheric data as-

similation problems, it is not at all uncommon to have an

ensemble prior variance for certain variables that is

significantly larger than the climatological variance,

when the atmosphere is locally far away from equilib-

rium. One relevant example would be in the vicinity of

strong fronts over the Southern Ocean. In such a case, it

may not be appropriate to limit the variance to the cli-

matological value.

In this work we have studied systems where for

sufficiently large observation intervals Dtobs the vari-

ables acquire their true climatological mean and vari-

ance when the model is run. In particular we have not

included model error. It would be interesting to see

whether the variance-limiting filter can help to control

model error in the case that the free running model

would produce unrealistically large forecast covari-

ances. Usually numerical schemes underestimate error

covariances, but this is often caused by severe di-

vergence damping (Durran 1999), which is artificially

introduced to the model to control unwanted gravity

wave activity and to stabilize the numerical scheme.

The stabilization may be achieved by a much smaller

amount of divergence damping by implementing the

variance-limiting constraint in the data assimilation

procedure. The VLKF would in this case act as an ef-

fective adaptive damping scheme, counteracting the

model error.
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