Quiz 8

Name:

Directions: Calculators are allowed, but you shouldn't need to use your calculator. <u>Use your equals signs!</u> Use the back of the page if you run out of space.

(10 marks) Find the minimum value of the function $f(x,y) = x^2 + 2x + 9y^2 + 4y + 8xy$, subject to the constraint that the solution must lie on the plane x + y = 1.

- (a) Write down an appropriate constraint g(x, y) = 0.
- (b) Form the Lagrange function $F(x, y, \lambda) = f(x, y) \lambda g(x, y)$.
- (c) Solve the appropriate set of simultaneous equations that arise from differentiating this function to find the optimal values for x and y.

(a)
$$f = x^2 + 2x + 9y^2 + 4y + 8xy$$

 $g = x + y - 1 = 0$ constant.
(b) so $f = z^2 + 2x + 9y^2 + 4y + 8xy - 1x - 1y + 1$
(c) Let $f_{x} = 2x + 2 + 8y - 1 = 0$...(1)
 $f_{y} = 18y + 4 + 8x - 1 = 0$...(2)
 $f_{y} = -x - y + 1 = 0$...(3)

(1):
$$J = 2x + 2 + 8y$$

(2): $J = 18y + 4 + 8x$
So $2x + 2 + 8y = 10y + 4 + 8x$

$$-10y = 2 + 6x$$

$$y = -(2 + 6x)$$

$$y = -(1 + 3x)$$
So sub into (3):

$$5x - 1 - 3x = 5$$
 $2x = 6$
 $x = 3$
 $50 \quad y = 7$

2x = 6 x = 3 | Solutions So y = 2. (x,y) = (3,2)